A Resonant-Field Framework for Unification of the Four Fundamental Forces

John Harby

10/19/2025

We propose a resonant-field model in which the four fundamental interactions—gravitational, electromagnetic, weak, and strong—arise as frequency modes of a single causal quantum substrate. Excitations in this substrate couple through long-range resonance that manifests as gravity, while short-range, high-frequency modes reproduce the gauge interactions. The framework preserves causality, predicts energy-bounded propagation, and offers a quantitative link between coupling constants through resonance bandwidths. We outline a prototype Lagrangian, derive the mode spectrum, identify conditions for a Newtonian $1/r^2$ potential and Yang–Mills-like behavior in appropriate limits, and suggest experimental signatures (e.g., tiny frequency-dependent dispersion in gravitational waves).

Unification, resonance, emergent gravity, gauge fields, dispersion, causality, topology of modes.

Introduction

Unifying gravity with the electroweak and strong interactions remains a central challenge. We explore an alternative to conventional grand-unification: a *resonant* quantum substrate whose normal modes generate the observed forces. The key physical picture is that matter perturbs an underlying field whose causal, coherent oscillations transmit influence; long-wavelength, low-frequency modes appear as gravity, while higher-frequency, shorterrange modes correspond to gauge interactions.

This approach is conceptually adjacent to emergent-gravity and analog-gravity programs, but differs in positing a single substrate field whose spectrum organizes all four interactions. Our goals are: (i) a minimal field equation, (ii) a mode spectrum that includes an effectively massless long-range mode (gravity) and massive short-range modes (weak/strong), (iii) causal propagation with $v_g \rightarrow c$ at long wavelengths, and (iv) at least one falsifiable prediction.

Resonant Substrate Model

Let $\Phi: \mathbb{R}^{1,3} \to \mathbb{R}$ (scalar) or Φ_{μ} (vector) represent the substrate. In the simplest scalar prototype,

$$(\Box + \Omega_0^2) \Phi = \sum_{i \in \{g, \text{em}, w, s\}} g_i J_i,$$

where $\Box=\partial_t^2-c_r^2\nabla^2$ is the wave operator with substrate propagation speed c_r , Ω_0 is an intrinsic substrate frequency, J_i are source currents for the four channels (gravitational g, electromagnetic em, weak w, strong s), and g_i are couplings. Matter perturbs Ω_0 locally:

$$\Omega_0^2 \mapsto \Omega_0^2 - \alpha \rho(\mathbf{x}),$$

with density (or energy) ρ . The causal Green's function is *retarded*, so no superluminal influence arises.

A Lagrangian density yielding [eq:field] is

$$\mathcal{L} = 1/2 \left(\partial_{\mu} \Phi\right) \left(\partial^{\mu} \Phi\right) - 1/2 \Omega_0^2 \Phi^2 - V(\Phi) - \sum_i g_i J_i \Phi,$$

with $V(\Phi)$ capturing weak nonlinearities that can split the spectrum into bands.

Mode Spectrum and Force Identification

Linearizing around a background, set $\Phi(\mathbf{x},t) = \sum_n A_n \, e^{i(\omega_n t - \mathbf{k}_n \cdot \mathbf{x})}$. The dispersion relation of small oscillations is

$$\omega_n^2(\mathbf{k}) = \Omega_n^2 + c_r^2 \parallel \mathbf{k} \parallel^2,$$

where band centers Ω_n emerge from $V(\Phi)$ (or from internal degrees of freedom if Φ is multi-component). We identify:

n=0 : $\Omega_0 \approx 0$ (gapless), range $\to \infty \Rightarrow$ gravity-like,

n=1 : $\Omega_1 \approx 0$ or tiny, long range \Rightarrow EM-like,

n=2 : $\Omega_2 > 0$, short range \Rightarrow weak-like,

n=3 : $\Omega_3 \gg 0$, very short range \Rightarrow strong-like.

The gapless (or near-gapless) mode ensures an effective $1/r^2$ force. Massive bands imply Yukawa-type screening at range $\lambda_n \sim c_r/\Omega_n$.

Geometric Interpretation (Phase Field)

Let $\Phi = A e^{i\theta}$ define a phase field $\theta(\mathbf{x},t)$. We introduce an effective metric

$$g_{\mu\nu} = \eta_{\mu\nu} + \alpha \ \partial_{\mu}\theta \ \partial_{\nu}\theta$$

so long-wavelength phase gradients induce curvature. In the weak-field, static limit, $\theta(\mathbf{x},t)=\theta_0(\mathbf{x})+\omega t$ yields a potential $\Phi_G\propto\theta_0$ whose gradient produces Newtonian acceleration. A key consistency condition is that null geodesics in $g_{\mu\nu}$ reproduce light bending and Shapiro delay to current PPN bounds.

Newtonian Limit and Universal Coupling

For static sources, the retarded Green's function $G(\mathbf{r})$ of [eq:field] with $\Omega_0 \to 0$ obeys

$$-c_r^2 \nabla^2 G(\mathbf{r}) = \delta(\mathbf{r}) \quad \Rightarrow \quad G(\mathbf{r}) = \frac{1}{4\pi c_r^2} \frac{1}{r}.$$

Define an interaction energy between sources J_g and J'_g :

$$V(\mathbf{r}) = -\beta \int J_g(\mathbf{x}) G(\mathbf{x} - \mathbf{x}') J'_g(\mathbf{x}') d^3x d^3x'.$$

For point-like masses (or localized energy), $V(r) \propto -1/r$ and the force $F(r) = -\partial_r V \propto 1/r^2$. *Universality* (equivalence principle) requires that J_g couple to total energy density, not composition; this can be enforced by symmetry or by a universal minimal coupling rule.

Causality and Dispersion

Causality is ensured by the retarded propagator G_{ret} . The group velocity

$$v_g(\mathbf{k}) = \frac{\partial \omega}{\partial \| \mathbf{k} \|} = \frac{c_r^2 \| \mathbf{k} \|}{\omega(\mathbf{k})}$$

satisfies $v_g \to c_r$ for $\| \mathbf{k} \| \to \infty$ and $v_g \to 0$ for $\| \mathbf{k} \| \to 0$ if $\Omega_n > 0$. For the gravity-like band with $\Omega_0 \approx 0$, $v_g \to c_r$. Matching multi-messenger constraints implies $|c_r - c|/c \lesssim 10^{-15}$.

Residual dispersion in the n=0 band predicts a tiny frequency-dependent phase delay for gravitational waves:

$$\Delta t \approx D\left(\frac{1}{v_a(f)} - \frac{1}{c}\right),$$

for propagation distance D and frequency f. Current LIGO/Virgo/KAGRA data can bound such effects.

Coupling Relations from Resonance Bandwidths

Let $\Delta\omega_n$ denote the effective bandwidth of mode n. A simple energy-partition model yields relative couplings

$$g_n^2 \propto \int_{\omega \in \text{band } n} \rho_{\Phi}(\omega) d\omega \approx \rho_{\Phi}(\bar{\omega}_n) \Delta \omega_n,$$

with ρ_{Φ} the substrate spectral density. This connects G (gravity), α (EM), g_w , g_s to band shapes. More refined constructions can incorporate mixing angles (e.g., electroweak) via band overlap integrals.

Predictions and Experimental Implications

- Gravitational-wave dispersion: Tiny, frequency-dependent delays; constrained by GW170817-like events.
- Short-range deviations: If a small residual gap exists in the n=0 band, Yukawa corrections below sub-mm scales may arise (torsion-balance tests).
- **Coupling correlations:** Weak relations between G and gauge couplings via $\Delta \omega_n$ provide cross-checks.
- **Cosmology:** A near-zero Ω_0 acts as a vacuum resonance; slow drift could mimic dark-energy-like stiffness in the IR.

Discussion and Outlook

We outlined a minimal resonant-field framework that yields (i) a gapless long-range mode reproducing Newtonian gravity, (ii) massive bands for short-range forces, and (iii) causal propagation. Future work includes: (a) a full gauge-theoretic extension where EM/weak/strong arise as internal symmetries of a multi-component Φ , (b) a derivation of PPN parameters to current bounds, (c) quantization and computation of propagators, and (d) numerical studies of band structures and mixing.

Appendix: Notation

 Φ (substrate field), $\theta = \arg \Phi$ (phase), $\Box = \partial_t^2 - c_r^2 \nabla^2$, c_r (substrate wave speed), Ω_n (band centers), $\Delta \omega_n$ (bandwidths), $G_{\rm ret}$ (retarded Green's function), $g_{\mu\nu}$ (effective metric), J_i (source currents), g_i (couplings).

Acknowledgment

The author thanks collaborators and colleagues who provided feedback on early drafts, and notes that supplemental mathematical results on equivalence and energy bounds are available in a separate technical companion. ChatGPT was instrumental in producing this so I thank OpenAI as well.

S. Weinberg, *The Quantum Theory of Fields*.1em plus 0.5em minus 0.4em Cambridge University Press, 1995.

A. Zee, *Quantum Field Theory in a Nutshell*.1em plus 0.5em minus 0.4em Princeton University Press, 2010.

E. Verlinde, "On the Origin of Gravity and the Laws of Newton," *JHEP*, 2011.

J. Harby, "Energy, Accuracy, and Equivalence: A Mathematical Framework for AI Optimization," 2025, preprint.